
Vega Technical Overview

vega.xyz

July 30, 2019

1 Introduction

Vega is a technology protocol that allows decentralised
public or private networks to facilitate the fully au-
tomated end-to-end trading and execution of financial
products. Networks are secured with a byzantine fault
tolerant consensus layer and implement pseudonymous
margin trading using a novel market based liquidity
incentivisation scheme to solve the problem of attract-
ing and allocating market making resources in a decen-
tralised system.

The technology choices and design of Vega are driven
by criteria that align our engineering approach with the
overall vision for Vega:

• Security and correctness: Vega must be designed
with security and testability in mind.

• Blockchain performance: Vega will be and will re-
main at the cutting edge of public blockchain per-
formance in terms of latency and throughput.

• Application performance: the application layer
must perform on a par with professional (including
non-blockchain based) trading systems.

• Flexibility: Vega cannot be tied to any specific
blockchain or cryptocurrency for operation or trad-
ing and settlement.

• Developer experience: Vega must be easy to build
against for all types of developer and use case.

This short paper covers some of the more technical
aspects of networks using the Vega protocol, and of the
reference implementation developed by the Vega team.
For a description of the protocol itself, see the Vega pro-
tocol whitepaper1.

2 Architecture

We use Command Query Responsibility Segregation2

(CQRS) and a modular design to enforce strict separa-
tion between the consensus (blockchain), application, and
API layers in the reference implementation. Transac-
tions are Protocol Buffers messages passed from the
consensus layer to the application layer, in an order that
is guaranteed by the consensus algorithm to be the same
for all nodes3.

1https://vega.xyz/papers/vega-protocol-whitepaper.pdf
2https://martinfowler.com/bliki/CQRS.html
3Vega therefore requires a blockchain with immediate finality.

Vega nodes also read from other blockchains that are
used for collateral, and post transactions to the Vega
network when they recognise a deposit or withdrawal on
that blockchain. Vega therefore supports collateral from
multiple blockchains, and cross-chain settlement.

Consensus Layer

Tendermint or other blockchain

W
ri
te

 t
ra

n
s
a
c
ti
o

n
s
 g

o
 t

h
ro

u
g

h
 c

o
n
s
e
n
s
u
s

Ordered 
transactions D

e
p

o
s
it
s

C
o

lla
te

ra
l 
b

lo
c
k
c
h

a
in

s
(e

.g
. 
E

th
e
re

u
m

, 
B

it
c
o

in
, 

…
)

Read Stores

In memory + disk

Clients, API consumers, etc.

Application Layer

GRPC services (Go, Protobufs)

API Layer

GRPC, FIX, GraphQL, REST 

Vega

Blockchain layer

Vega runs its own proof-of-stake blockchain network for
performance, scalability, and flexibility. We currently
use Tendermint4 for consensus, which provides a 1 sec-
ond block time and can process 1000–4000 transactions
per second (tps). Transactions undergo initial validation
before being accepted, and are processed by the Vega
application once each block has been finalised.

The separation between the blockchain and applica-
tion means that Vega is blockchain independent, because
the application layer can process valid, ordered transac-
tions from any source. This allows Vega to migrate to
a new consensus protocol if better technology becomes
available. Blockchain independence also means that the
Vega protocol and core implementation can be easily re-
used in other decentralised, distributed, or even tradi-
tional server-based environments to cater for a wider
range of use cases.

4https://tendermint.com/

https://vega.xyz/papers/vega-protocol-whitepaper.pdf
https://martinfowler.com/bliki/CQRS.html
https://tendermint.com/


Application layer

The application (a.k.a. trading core) processes incoming
transactions from the consensus layer — in the form of
protocol buffers messages — sequentially and determin-
istically. This guarantees that all nodes will arrive at ex-
actly the same state. The entire protocol currently re-
quires just 11 transaction types:

governance: proposal to open a market, proposal to
close a market, proposal to update a parameter,
vote on a proposal.

trading: submit instruction (order), amend instruction,
cancel instruction, notify observable (oracle data).

collateral: notification of deposit (on collateral chain),
request for withdrawal, validation of withdrawal.

The trading core in our implementation is written en-
tirely in Go, selected as it is a mature language that is
ideal for writing dependable, maintainable, and high
performance server applications. The Vega application
is divided into functional components, which are de-
scribed later in this document.

Read stores

The read stores, also implemented in Go, ingest and in-
terpret a stream of events from the trading core and
store the resulting data in memory and disk backed data
structures designed to service API queries. Events in-
clude state changes for orders, trade executions, price
and risk numbers, settlement cashflows, deposits and
withdrawals, and governance actions.

API layer

Clients connect to various APIs, which perform queries
on the read stores and post commands to the consensus
layer. The APIs are designed to provide a great devel-
oper experience for different types of client system.

The GRPC and FIX APIs provide for high perfor-
mance trading and data systems integration; whereas
the REST and GraphQL APIs, which include support
for streaming market data, are designed for quickly and
easily building high performance front end applications
and scripting.

3 Trading core components

Vega’s trading core is a modular application with func-
tional separation between components that allows for
maximum configurability, including selective use of a
subset of components in permissioned deployments
that do not need the protocol’s full functionality.

• Matching engine: a limit order book that oper-
ates either in continuous trading or auction mode
for open markets. It will also support request for
quote (RFQ) and matched trades for trading on over
the counter (OTC) markets.

• Risk engine: evaluates the risk model for each mar-
ket to calculate margin requirements for each par-
ticipant’s net open position. The risk engine then
ensures that sufficient margin is allocated to each
net position with allocation requests to the collat-
eral manager, and initiates closeout trades if not.

• Collateral engine: maintains each participant’s bal-
ance for every crypto-asset they have deposited
by processing deposit notifications from collateral
blockchains and settlement instructions from the
settlement engine. It also handles the allocation of
collateral to markets for margin.

• Settlement engine: generates settlement instruc-
tions for the collateral engine when markets ma-
ture, products create interim cashflows, and any
time a position is fully or partially closed. Employs
the position resolution algorithm if there is a shortfall
at settlement.

• Governance engine: manages the creation and clo-
sure of markets on the network, and the modifica-
tion of parameters. Actions are taken in response
to voting that occurs following acceptance of a pro-
posal transaction from one or more participants.

4 Performance

Blockchain
• The use of proof-of-stake allows for significant

(multiple orders of magnitude) performance im-
provement over existing proof-of-work chains.

• Tendermint performance figures:

Block time: 1 second

Latency: 0.5–1.5 seconds

Throughput: 1000–4000 tps5

• The architectural separation of the blockchain layer
from the application layer allows for further im-
provements in future if more performant solutions
become available.

Application
• Vega’s matching engine has been tested with or-

der books containing millions of orders and consis-
tently processes submit, amend, and delete instruc-
tions in 5–15µs on a standard laptop.

• Risk models run on the ‘bare metal‘ and can there-
fore take advantage of the full capabilities of the un-
derlying hardware, including GPU acceleration and
parallelisation.

API layer
• The GRPC API uses binary Protocol Buffers mes-

sages, and data is retrieved from optimised in-
memory stores for high performance queries.

5Estimated production performance based on early testing.



5 Scaling

Vega has been designed from the outset to scale beyond
the early adopter phase, to the level required for serious
real-world use as part of the world’s financial infrastruc-
ture.

• The protocol allows for the network to be sharded
by risk universe6, effectively meaning that each mar-
ket can have its own network. This means that Vega
has essentially unlimited horizontal scalability and
can therefore cater for any number of instruments
and markets.

• Each blockchain, and therefore each market, is lim-
ited in transaction throughput by the blockchain
technology in use as well as the physical network
and computing infrastructure in place. This limit
will increase over time with both hardware and
software upgrades, which may include migrating
to a different consensus protocol and implementa-
tion. For markets that are at the limit, transaction
aggregation will allow participation to continue to
increase, at the cost of latency for some transactions.

• Risk models can be run asynchronously, with re-
sults going through consensus, allowing for slower
and more complex Monte Carlo type risk models as
well as fast closed form calculations.

6 Reference trading UI

Whilst we expect many users to connect to the various
APIs directly, Vega will provide a fully functional refer-
ence implementation of a trading UI for Vega.

The screenshot below is of an early prototype of this
application, which will be developed into a professional
quality trading application with a variety of trading and
risk management tools. The trading front end will also
be extensible with third party extensions.

The reference UI is a JavaScript + HTML dApp built
with TypeScript, React, and GraphQL (Apollo) and can
be run from a hosted server or directly from a user’s
local machine. Like the rest of Vega, it is fully decen-
tralised, requiring only a connection to a full or passive
Vega node to run.

6A market or set of related markets that allow for perfect netting,
for instance various maturities of a futures contract, or options with
different strikes on the same underlying.

7 Multi-chain collateral

Vega is designed for high performance trading and set-
tlement, but does not host the assets being traded. In-
stead, Vega is designed to work with the wide range of
digital coins, tokens, and other assets held on existing
blockchains.

However, although it manages the balances of any as-
sets deposited with the network, the Vega blockchain it-
self doesn’t hold these crypto-assets. In this sense, Vega
is a ‘second layer’ solution or side-chain, providing func-
tionality on top of that provided by other blockchains
such as Bitcoin and Ethereum, which hold the underly-
ing assets being traded.

To achieve this, every Vega full node operator will
also need to run full nodes of each supported collateral
blockchain.

notification
of deposit

Vega node

Vega 

blockchain
e.g. Tendermint

Vega

trading core

Collateral blockchains

(full nodes)
Ethereum, Bitcoin, …

For example, a smart contract on the Ethereum
blockchain is used to hold funds deposited to Vega and
regulate withdrawals. Payments into the smart contract
are recognised and ready for use on Vega once they have
been observed by two thirds of the nodes. To withdraw
funds, a request is made via a Vega transaction. If it is
valid, the Vega nodes sign a multi-sig withdrawal trans-
action that can be posted to the Ethereum blockchain
once it receives enough (two thirds of nodes, again) sig-
natures to complete the transaction.

A similar approach can be taken for every collateral
blockchain, however in practice we will at some point
look for multi-chain / cross-chain solutions to support
collateral from a wider range of source chains with a sin-
gle integration.


	Introduction
	Architecture
	Trading core components
	Performance
	Scaling
	Reference trading UI
	Multi-chain collateral

